Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе №10

Решение интегралов с помощью квадратурных формул Ньютона-Котеса

Метод трапеций

Студент: Чинь Тхи Тху Хоай

Преподаватель: Козлов Константин Николаувич

Группа: 5030102/20001

Санкт-Петербург 2024

Содержание

1	Формулировка задания и её формализации	2
2	Алгоритм методов и условия их применимости 2.1 Метод трапеций 2.2 Алгоритм метода трапеций 2.3 Условие применимости	2 2 2 2
3	Тестовый пример с детальными расчетами для задачи малой размерности	3
4	Подготовка контрольных тестов	4
5	Модульная структура программы	4
6	Численный анализ решения задачи 6.1 функции $y=x^5-5.2x^3+5.5x^2-7x$, [a,b] = [-3,3] 6.2 функции $y=x^5-5.2 x^3 +5.5x^2-7x$, [a,b] = [-3,3]	5 5
7	Краткие выволы	8

1 Формулировка задания и её формализации

Метод трапеций — это численный метод для приближенного вычисления определенных интегралов. Он относится к квадратурным формулам Ньютона-Котеса, которые используются для аппроксимации интегралов с помощью сумм значений подынтегральной функции, взвешенных определенным образом. Этот лаб требуется найти приближенное значение интеграла с заданной точностью с помощью обобщенной формулы трапеций. Заданная точность достигается по правилу Рунге. И исследовать зависимость фактической ошибки и числа итераций (число разбиений отрезка) от заданной точности, заивисмость фактической ошибки от длины отрезка разбиения.

2 Алгоритм методов и условия их применимости

2.1 Метод трапеций

Представим определнный интеграл функции f(x) на промежутке [a; b] в виде суммы интегралов вида $\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{f(x_{i-1}) + f(x_i)}{2} .h$, где $h = \frac{b-a}{n}$

Т.е. в итоге получаем, что
$$\int_a^b f(x) dx = h(\frac{f(x_0) + f(x_n)}{2} + \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} f(x)$$
)

Преобразуем немного формулу и получим $\int_a^b f(x) = h(\frac{f(x_0) + f(x_n)}{2} + \sum_{i=1}^{n-1} f(x_i))$

2.2 Алгоритм метода трапеций

- 1. Вычисляем шаг h по формуле: $h = \frac{b-a}{n}$.
- 2. Определяем узлы $x_i = x_0 + i \cdot h$, где $x_0 = a$ и значение функции в них $f(x_i)$, где $i = 0, 1, \ldots, n$.
 - 3. Цикл: вычисляем $I = \int_a^b f(x) = h\left(\frac{f(x_0) + f(x_n)}{2} + \sum_{i=1}^{n-1} f(x_i)\right)$.
 - 4. Обновляем n := 2n.
 - 5. Вычисляем I_{2n} по формуле из пункта 3.
- 6. Если $\frac{|I_{2n}-I|}{2^k-1} \ge \epsilon$, то возвращаемся к пункту 4, иначе возвращаем I_{2n} , где k=2 для метода трапеций.

2.3 Условие применимости

Функция f(x) должна быть дважды дифференцируемой на отрезке [a; b]

3 Тестовый пример с детальными расчетами для задачи малой размерности

Dano pynkyva:
$$f(x) = x^3 + x + 1$$
 ra ompoke [0.47]

th $n = 4$, morga $h = \frac{4 \cdot 0}{4} = 4$, $x_0 = 0$, $x_1 = 9$
 $I_1 = \int_0^1 (x^3 + x + 1) dx = h \cdot (\frac{1}{2}(x_0) + \frac{1}{2}(x_0)) = 4 \cdot \frac{1 + 69}{2} = 140$

th $n = 2$; morga $h = \frac{4 \cdot 0}{2} = 2$
 $x_0 = 0$, $x_1 = 2$, $x_2 = 4$
 $I_2 = h \cdot (\frac{1}{2}(x_0) + \frac{1}{2}(x_0)) = 2 \cdot (\frac{1 + 69}{2} + 41) = 92$

Usublike fynthe: $\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} = 16$

th $n = 4$, morga $h = \frac{4 \cdot 0}{2} = 1$
 $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 9$
 $x_1 = h \cdot (\frac{1}{2}(x_0) + \frac{1}{2}(x_0)) = \frac{1}{2} \cdot (\frac{1 + 69}{2} + 3 + (1 + 1)) = 92$

Usublike fynthe: $\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{$

4 Подготовка контрольных тестов

Для исследования зависимости фактической опибки, числа итераций от заданной точности по методу трапеций для функции: $y=x^5-5.2x^3+5.5x^2-7x$ на отрезке [-3, 3], мы выбрали $\epsilon=[10^{-6},10^{-1},10^{-2},10^{-3},10^{-4},10^{-5},10^{-6},10^{-7},10^{-8},10^{-9}]$ После «наглядных» результатов, построим график ошибок, то есть график модуля разности между значением интеграла по методу трапеций в точке и значением точно интеграла в этой же точке, и построим график числа итераций от заданной точности. Для исследования функция модификации, выбрали функцию: $y=x^5-5.2|x^3|+5.5x^2-7x$.

5 Модульная структура программы

- \bullet double Func
(double x): Возвращает значение функции $y=x^5-5.2x^3+5.5x^2-7x$ в точке х
- \bullet double Modified Func
(double x): Возвращает значение функции $y=x^5-5.2|x^3|+5.5x^2-7x$ в точке х
- double trapezoidalIntegral(int n): Возвращает значение интеграл функций с n разбиением отрезка по методу трапеций
- double Integral(double eps, int *k, int *n): Возвращает значение интеграл функций для достижения заданной точности использовать правило Рунге, k число итераций, n разбиений отрезка

6 Численный анализ решения задачи

6.1 функции $y = x^5 - 5.2x^3 + 5.5x^2 - 7x$, [a,b] = [-3,3]

• Построить график зависимости фактической ошибки от заданной точности, отметить линию биссектрисы

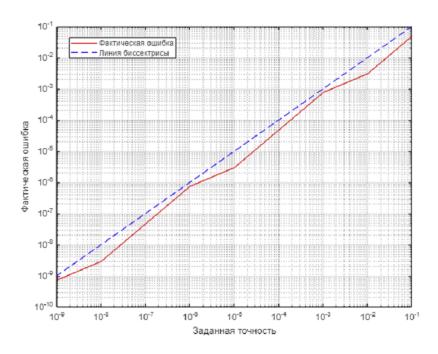


Рис. 1: График зависимости фактической ошибки от заданной точности

• Построить график зависимости числа итераций от заданной точности

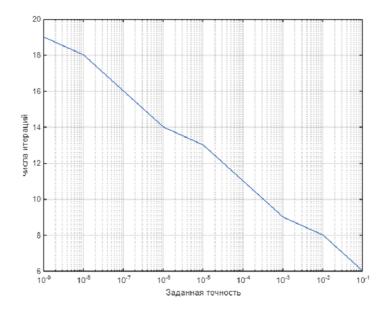


Рис. 2: График зависимости числа итераций от заданной точности

• Построить график фактической ошибки от длины отрезка разбиения, использовать логарифмический масштаб по основанию 2. По графику определить порядок

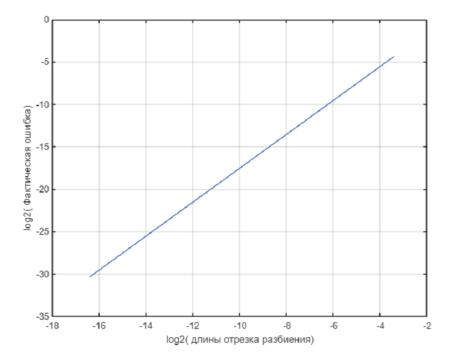


Рис. 3: фактической ошибки от длины отрезка разбиения

точности применяемой формулы k=2.002, мало чем отличающийся от k=2 в теории.

6.2 функции
$$y = x^5 - 5.2|x^3| + 5.5x^2 - 7x$$
, [a,b] = [-3,3]

• Построить график зависимости фактической ошибки от заданной точности, отметить линию биссектрисы

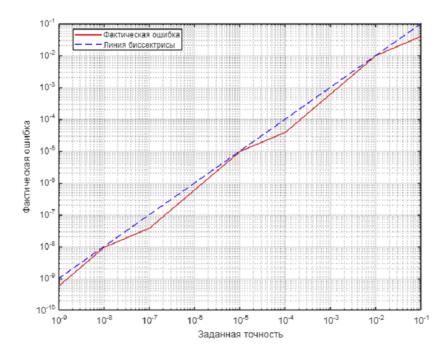


Рис. 4: График зависимости фактической ошибки от заданной точности

• Построить график зависимости числа итераций от заданной точности

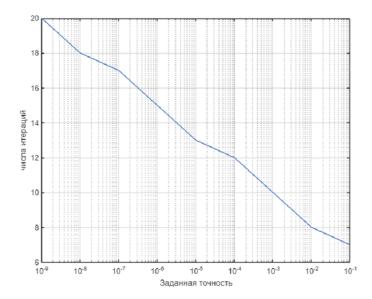


Рис. 5: График зависимости числа итераций от заданной точности

7 Краткие выводы

- 1. С уменьшением заданной точности, фактическая ошибка уменьшается, приближаясь к идеальной линии ошибки, которая соответствует заданной точности. Это демонстрирует эффективность численного метода и его способность достигать более высокой точности с увеличением числа разбиений.
- 2.С уменьшением заданной точности, число итераций увеличивается.
- 3.спользование логарифмического масштаба по основанию 2 позволяет четко увидеть зависимость фактической ошибки от длины отрезка разбиения. Анализ наклона линии на графике позволяет определить порядок точности применяемой формулы $\mathbf{k}=2$
- 4. Модификация функции с добавлением модуля или функции знака создает разрывы первой производной, что может существенно повлиять на поведение численного метода, особенно в окрестности точек разрыва.